Designing Individualized Dosage Regimens Using One Compartment Model Equations

Dr. Muhannad R. M. Salih B.Sc, M.Pharm (Clinical Pharmacy), Ph.D, RPH Pharmacy Department, Al-Rasheed University College muhanad_rmk@yahoo.com

Introduction

- The goal of therapeutic drug monitoring is to customize medication doses that provide the optimal drug efficacy without adverse reactions.
- One compartment model equations can be used to compute initial drug doses employing population pharmacokinetic parameters that estimate the constants for a patient.

Introduction

- The patient's own, unique pharmacokinetic parameters can be computed once doses have been administered and drug serum concentrations measured.
- At that time, individualized dosage regimens at steady state can be designed for a patient.

Designing Individualized Dosage Regimens Using One Compartment Model Equations.docx

- If the Vd & K_e can be estimated for a patient, a loading dose and initial maintenance dose can be computed.
- To design these doses, estimates of pharmacokinetic constants are obtained using patient characteristics such as
 - Weight
 - Age
 - Gender
 - Renal and liver function
 - Other disease states & conditions that are known to effect the disposition and elimination of the drug

- When the actual K_e and Vd are measured for the medication, a maintenance dose to achieve any target steady-state concentrations can be designed.
- If the patient has never received the drug before, the therapeutic range can be used to choose starting concentrations.
- If the patient has taken the drug on previous occasions, safe and effective concentrations may be known.

The dosage interval (Ţ) can be computed using the desired maximum (Css_{max}) and minimum (Css_{max}) ste concentrations:

 $T = (In Css_{max} - In Css_{min})/k_e$

occurs (t = 0 hour after the bolus is given)

 $D = [Css_{max} V(1 - e^{-keT})]/e^{-ke(0h)}$

 $LD = Css_{max}V$

- An example, a patient that needs to be treated for complex partial seizures with intravenous phenobarbital.
- An initial dosage regimen is designed using population pharmacokinetic parameters ($k_e = 0.139 d^{-1}$, V = 50 L)
- To achieve ${\rm Css}_{\rm max}~$ & ${\rm Css}_{\rm min}$ equal to 30 mg/L and 25 mg/L, respectively.

- $T = (In Css_{max} In Css_{min})/k_{e}$
 - = [ln (30 mg/L) ln (25 mg/L)] / 0.139 d-1 = 1.3 d round to a practical dosage interval of 1 d

 $D = Css_{max}V(1 - e^{-keT})$

- $= (30 \text{ mg/L} \cdot 50 \text{ L})(1 e^{(-0.139 \text{ d}-1)(1 \text{ d})})$
- = 195 mg, round to a practical dose of 200 mg.

The patient would be prescribed intravenous phenobarbital 200 mg daily.

Continuous Intravenous Infusion

An example, a patient with a ventricular arrhythmia after a myocardial infarction needing treatment with lidocaine at a Css of 3.0 mg/L (population pharmacokinetic parameters used: V = 50 L, Cl = 1.0 L/min)

LD = CssV

= (3 mg/L)(50 L) = 150 mg

k₀ = CssCl = (3 mg/L)(1.0 L/min) = 3 mg/min

The patient would be prescribed lidocaine 150 mg intravenously followed by a 3 mg/min continuous infusion.

Intermittent Intravenous Infusion

For intermittent intravenous infusions, the dosage interval (Ţ) is computed by choosing Css_{min} and Css_{max}:

T = [(In Css max -In Css min)/ke] + t'

- t': is the infusion time
- The maintenance dose is calculated by

 $k_0 = Css_{max} k_e V[(1 - e^{-ke T})/(1 - e^{-ke t'})]$

• Loading dose:

 $LD = k_0 / (1 - e^{-ket})$

Intermittent Intravenous Infusion

- An example, a patient receiving tobramycin for the treatment of intraabdominal sepsis.
- Using pharmacokinetic parameters (V = 20 L, $k_e = 0.087 h^{-1}$) previously measured in the patient using serum concentrations.
- Compute a tobramycin dose (infused over 1 hour) that would provide Css_{max} & Css_{min} of 6 mg/L and 1 mg/L, respectively.

Intermittent Intravenous Infusion

T = [(In Css max -In Css min)/ke] + t'

- = [(ln 6 mg/L ln 1 mg/L) / 0.087 h^{-1}] + 1 h
- = 22 h, round to practical dosage interval of 24 h

$k_0 = Css_{max} k_e V[(1 - e^{-keT})/(1 - e^{-ket'})]$

 $= [(6 \text{ mg/L})(0.087 \text{ h-1})(20 \text{ L})][(1 - e^{(-0.087 \text{ h-1})(24 \text{ h})})/(1 - e^{(-0.087 \text{ h-1})(1 \text{ h})})]$

= 110 mg

• The patient would be prescribed tobramycin 110 mg infused over 1 hour every 24 hours.

Extravascular

 The dosage regimen for extravascular doses is determined by choosing Css_{max} & Css_{min}:

$$T = [(In Css_{max} - In Css_{min})/k_e] + T_{max}$$

 T_{max} is the time that the maximum concentration occurs

 $D = [(Css_{max} V)/F][(1 - e^{-keT})/e^{-keTmax}]$

 $LD = (Css_{max} V)/F$

Extravascular

- An example, a patient with simple partial seizures that needs to receive valproic acid capsules (population pharmacokinetic parameters are V = 12 L, k e = 0.05 h-1, T max = 3 h, F = 1.0) and maintain Css_{max} & Css_{min} of 80 mg/L and 50 mg/L, respectively:
- $T = [(In Css_{max} In Css_{min})/k_e] + T_{max}$
 - = [(ln 80 mg/L ln 50 mg/L) / 0.05 h⁻¹] + 3 h
 - = 12.4 h, round to practical dosage interval of 12 h

Extravascular

$D = [(Css_{max} V)/F][(1 - e^{-keT})/e^{-keTmax}]$

=[(80 mg/L \cdot 12 L)/1.0)][(1 - $e^{(-0.05 h-1)(12 h)})/e^{(-0.05 h-1)(3 h)}]$

- = 503 mg, round to practical dose of 500 mg.
- The patient would be prescribed valproic acid capsules 500 mg orally every 12 hours.

Average Steady-State Concentration

- If the drug is administered as a sustained-release dosage form or the half-life is long compared to the dosage interval, it is possible to use the average steady-state concentration equation to individualize doses.
- The dosage regimen is computed using the following equation:

D = (Css Cl T)/F $D = (Css k_e VT)/F$ LD = (CssV)/F

Average Steady-State Concentration

An example, a patient with an atrial arrhythmia needing treatment with procainamide sustained-release tablets (clearance equals 24 L/h based on current procainamide continuous infusion; F = 0.85, T = 12 h for sustained-release tablet) and an average steady-state procainamide concentration equal to 5 mg/L:

D = (Css Cl T)/F

- = (5 mg/L \cdot 24 L/h \cdot 12 h) / 0.85 = 1694 mg, round to a practical dose of 1500 mg
- The patient would be prescribed procainamide sustainedrelease tablets 1500 mg orally every 12 hours.

Any Questions