

AL-RASHEED UNIVERSITY COLLEGE DEPARTMENT OF MEDICAL LABORATORY TECHNIQUES

Introduction to Metabolism and Glycolysis Lecture 5

Prepared By Dr. Kutaiba I. Alzand & Dr. Rusul H. Hamza

الوحدة الثانية - المحاضرة الاولى - الزمن: 90 دقيقة أهداف المحاضرة الاولى:

يتوقع في نهاية المحاضرة أن يكون الطالب قادراً على:

By the end of the lecture, the student should be able to:

- 1. Define the following terms: (Metabolism, Catabolic Pathways, Anabolic Pathways).
- 2. To provide the student with the "big picture," a metabolic map containing the important central pathways of energy metabolism
- 3. Compare between catabolic and anabolic pathways.
- 4. Discuss the three stages of catabolism

موضوعات المحاضرة الاولى:

> INTRODUCTION TO METABOLISM

- Metabolic Map
- Catabolic Pathways
 - Hydrolysis of complex molecules
 - Conversion of building blocks to simple intermediates
 - Oxidation of acetyl coenzyme A
- Anabolic Pathways

I. INTRODUCTION TO METABOLISM

- In Chapter 1, individual enzymic reactions were analyzed in an effort to explain the mechanisms of catalysis.
- However, in cells, these reactions rarely occur in isolation but, rather, are organized into multistep sequences called pathways, such as that of glycolysis (Figure 2.1).
- ➤ In a pathway, the product of one reaction serves as the substrate of the subsequent reaction.
- Different pathways can also intersect, forming an integrated and purposeful network of chemical reactions.
- These are collectively called metabolism, which is the sum of all the chemical changes occurring in a cell, a tissue, or the body.

Figure 2.1 Glycolysis, an example of a metabolic pathway.

- Most pathways can be classified as either catabolic (degradative) or anabolic (synthetic)
- Catabolic reactions break down complex molecules, such as proteins, polysaccharides, and lipids, to a few simple molecules (for example, CO₂, NH₃ and H₂O).
- Anabolic pathways form complex end products from simple precursors, for example, the synthesis of the polysaccharide, glycogen, from glucose.
- [Note: Pathways that regenerate a component are called cycles.]

A. Metabolic map

- It is convenient to investigate metabolism by examining its component pathways.
- Each pathway is composed of multienzyme sequences, and each enzyme, in turn, may exhibit important catalytic or regulatory features.
- ➤ To provide the reader with the "big picture," a metabolic map containing the important central pathways of energy metabolism is presented in Figure 2.2.
- > This map is useful in:
 - tracing connections between pathways
 - visualizing the purposeful "movement" of metabolic intermediates
 - depicting the effect on the flow of intermediates if a pathway is blocked (for example, by a drug or an inherited deficiency of an enzyme).

Figure 2.2 Important reactions of intermediary metabolism. Several important pathways to be discussed in later chapters highlighted. Curved are reaction arrows (S) indicate forward and reverse reactions that are catalyzed by different enzymes. The straight arrows $((\leq))$ indicate forward and reactions that reverse are catalyzed by the same enzyme. **Blue text** = intermediates of carbohydrate metabolism; **brown text** = intermediates of lipid metabolism; green text = intermediates of protein metabolism. UDP = uridinediphosphate; P = phosphate; CoA = coenzyme A.

B. Catabolic pathways

- Catabolic reactions serve to capture chemical energy in the form of adenosine triphosphate (ATP) from the degradation of energy-rich fuel molecules.
- Catabolism also allows molecules in the diet (or nutrient molecules stored in cells) to be converted into building blocks needed for the synthesis of complex molecules.
- Energy generation by degradation of complex molecules occurs in three stages as shown in Figure 2.3.
- [Note: Catabolic pathways are typically oxidative, and require oxidized coenzymes such as nicotinamide adenine dinucleotide (NAD⁺).]

Figure 2.3 Three stage of catabolism. CoA = coenzyme A; TCA = tricarboxylic acid.

1. Hydrolysis of complex molecules:

- In the first stage, complex molecules are broken down into their component building blocks.
- For example, proteins are degraded to amino acids, polysaccharides to monosaccharides, and fats (triacylglycerols) to free fatty acids and glycerol.

2. Conversion of building blocks to simple intermediates:

- In the second stage, these diverse building blocks are further degraded to acetyl coenzyme A (CoA) and a few other simple molecules.
- ➤ Some energy is captured as ATP, but the amount is small compared with the energy produced during the third stage of catabolism.

3. Oxidation of acetyl coenzyme A:

- ➤ The tricarboxylic acid (TCA) cycle is the final common pathway in the oxidation of fuel molecules that produce acetyl CoA.
- Oxidation of acetyl CoA generates large amounts of ATP via oxidative phosphorylation as electrons flow from NADH and flavin adenine dinucleotide (FADH₂) to oxygen.

C. Anabolic pathways

- Anabolic reactions combine small molecules, such as amino acids, to form complex molecules such as proteins (Figure 2.4).
- Anabolic reactions require energy (are endergonic), which is generally provided by the hydrolysis of ATP to adenosine diphosphate (ADP) and inorganic phosphate (P_i).
 - **Figure 2.4** Comparison of catabolic and anabolic pathways. ATP = adenosine triphosphate; NADH = nicotinamide adenine dinucleotide.

- Anabolic reactions often involve chemical reductions in which the reducing power is most frequently provided by the electron donor NADPH.
- Note that catabolism is a convergent process (that is, a wide variety of molecules are transformed into a few common end products).
- By contrast, anabolism is a divergent process in which a few biosynthetic precursors form a wide variety of polymeric, or complex, products.

Anabolic pathways Catabolic pathways Catabolic reactions break down complex Anabolic pathways form complex end molecules. such products from simple precursors, for proteins, as polysaccharides, and lipids, to a few the synthesis of example, the simple molecules (for example, CO_2 , polysaccharide, glycogen, from glucose. NH_3 and H_2O). Anabolic reactions require energy (are \triangleright Catabolic reactions serve to capture \triangleright energy in the form of chemical endergonic), which is generally adenosine triphosphate (ATP) from the provided by the hydrolysis of ATP to degradation of energy-rich adenosine diphosphate (ADP) fuel and molecules. inorganic phosphate (P_i). ➢ Catabolic pathways typically > Anabolic reactions often involve are require oxidized oxidative, and chemical reductions in which the coenzymes such as nicotinamide adenine reducing power is most frequently dinucleotide (NAD⁺). provided by the electron donor NADPH. \triangleright catabolism is a convergent process (that \triangleright anabolism is a divergent process in which a few biosynthetic precursors is, a wide variety of molecules are transformed into a few common end form a wide variety of polymeric, or products). complex, products.

Define the following terms:

- 1. Metabolism
- 2. Catabolic Pathways
- 3. Anabolic Pathways

نشاط (2/1/2) نشاط فردي

Compare between catabolic and anabolic pathways.