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Root Locus Technique 

The root locus is a graphical procedure for determining the poles of a closed-loop 

system given the poles and zeros of a forward-loop system. Graphically, the locus is the 

set of paths in the complex plane traced by the closed-loop poles as the root locus gain is 

varied from zero to infinity. In mathematical terms, given a forward-loop transfer 

function,  

       

where K is the root locus gain, and the corresponding closed-loop transfer function 

      

        
 

The root locus is the set of paths traced by the roots of            as K 

varies from zero to infinity. As K changes, the solution to this equation changes. This 

equation is called the characteristic equation. The roots to the equation are the poles of 

the forward-loop transfer function. The equation defines where the poles will be located 

for any value of the root locus gain, K. In other words, it defines the characteristics of 

the system behavior for various values of controller gain. 

 

 

Figure (1): Block diagram for closed loop control system 
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Characteristic Equation 

The characteristic equation of a system is based upon the transfer function that 

models the system. It contains information needed to determine the response of a 

dynamic system. There is only one characteristic equation for a given system. 

Root locus gain 

The root locus gain, typically denoted as K, is a gain of the forward-loop system. 

While determining the root locus, this gain is varied from 0 to infinity. Note that the 

corresponding variations in the poles of the closed-loop system determine the root locus. 

As the gain moves from 0 to infinity, the poles move from the forward-loop poles along 

the locus toward forward-loop zeros or infinity. In block diagram form (see Figure (1)), 

the root locus gain is located in the forward loop, before the system. 

Angle Criterion 

The angle criterion is used to determine the departure angles for the parts of the root 

locus near the open-loop poles and the arrival angles for the parts of the root locus near 

the open-loop zeros. When used with the magnitude criterion, the angle criterion can 

also be used to determine whether or not a point in the s-plane is on the root locus. The 

angle criterion is defined as on the root locus,  

               

Note that +180° could be used rather than -180°. The use of -180° is just a convention. 

Since +180° and -180° are the same angle, either produces the same result. The angle 

criterion is a direct result of the definition of the root locus; it is another way to express 

the locus requirements. The root locus is defined as the set of roots that satisfy the 

characteristic equation             or, equivalently,          , taking the phase 

of each side of the equation yields the angle criterion. 
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Magnitude Criterion 

The magnitude criterion is used to determine the locations of a set of roots in the 

s-plane for a given value of K. Mathematically, the magnitude criterion is |      |   .  

The magnitude criterion is a direct result of the definition of the root locus; it is another 

way to express the locus requirements. The root locus is defined as the set of roots that 

satisfy the characteristic equation             or, equivalently,            

taking the magnitude of each side of the equation yields the magnitude criterion. 

Angle of departure 

The angle of departure is the angle at which the locus leaves a pole in the s-plane. 

The angle of arrival is the angle at which the locus arrives at a zero in the s-plane. By 

convention, both types of angles are measured relative to a ray starting at the origin and 

extending to the right along the real axis in the s-plane. Both arrival and departure angles 

are found using the angle criterion. 

Break Point 

Break points occur on the locus where two or more loci converge or diverge. 

Break points often occur on the real axis, but they may appear anywhere in the s-plane. 

The loci that approach/diverge from a break point do so at angles spaced equally about 

the break point. The angles at which they arrive/leave are a function of the number of 

loci that approach/diverge from the break point. 

Closed-Loop 

A closed-loop system includes feedback. The output from the system is fed back through 

a controller into the input to the system. If Gu(s) is the transfer function of the 

uncontrolled system, and Gc(s) is the transfer function of the controller, and a unity 

feedback is used, then the closed loop system can be represented in block diagram form 

as 



 

4 
 

 

Sometimes a transfer function, H(s), is included in the feedback loop. In block diagram 

form, this can be represented as 

 

Complex-Plane (s-plane) 

The s-plane or complex plane is a two-dimensional space defined by two 

orthogonal axes, the real number axis and the imaginary number axis. A point in the s-

plane represents a complex number. When talking about control systems, complex 

numbers are typically represented by the letter s (thus the 's'-plane). Each complex 

number s has both a real component, typically represented by sigma, and an imaginary 

component, typically represented by omega.   

        

Any point in the complex plane has an angle (or phase) and magnitude defined as 

 

Graphically, each complex number s is plotted in the s-plane as follows 
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Forward Loop 

A forward-loop system is a part of a controlled system. As the name suggests, it is 

the system in the "forward" part of the block diagram. Typically, a forward-loop 

includes the uncontrolled system cascaded with the controller. For a system with 

controller Gc(s) and system Gu(s), the block diagram and transfer function of the 

forward-loop are 

 

Note that closing a loop around this controller and system using a unity feedback gain 

yields the closed-loop system.  

 

 

Constructing the Locus 
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This section outlines the steps to creating a root locus and illustrates the important 

properties of each step in the process. By the end of this section you should be able to 

sketch a root locus given the forward-loop poles and zeros of a system. Using these 

steps, the locus will be detailed enough to evaluate the stability and robustness 

properties of the closed-loop controller. 

Step 1: Open-Loop Roots 

Start with the forward-loop poles and zeros. Since the locus represents the path of 

the roots (specifically, paths of the closed-loop poles) as the root locus gain is varied, we 

start with the forward-loop configuration, i.e. the location of the roots when the gain of 

the closed-loop system is 0. Each locus starts at a forward-loop pole and ends at a 

forward-loop zero. If the system has more poles than zeros, then some of the loci end at 

zeros located infinitely far from the poles. 

Step 2: Real Axis Crossings 

Many root loci have paths on the real axis. The real axis portion of the locus is 

determined by applying the following rule: 

If an odd number of forward-loop poles and forward-loop zeros lie to the right of a point 

on the real axis, that point belongs to the root locus. 

Note that the real axis section of the root locus is determined entirely by the number of 

forward-loop poles and zeros and their relative locations. Since the final root locus is 

always symmetric about the real axis (think about it), the real axis part is pretty easy to 

do. 
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Step 3: Asymptotes 

The asymptotes indicate where the poles will go as the gain approaches infinity. 

For systems with more poles than zeros, the number of asymptotes is equal to the 

number of poles minus the number of zeros. In some systems, there are no asymptotes; 

when the number of poles is equal to the number of zeros then each locus is terminated 

at a zero 

rather than asymptotically to infinity. The asymptotes are symmetric about the real axis, 

and they stem from a point defined by the relative magnitudes of the open-loop roots. 

This point is called the centroid. Note that it is possible to draw a root locus for systems 

with more zeros than poles, but such systems do not represent physical systems. In these 

cases, you can think of some of the poles being located at infinity. 

 

Step 4: Breakpoints 

Break points occur where two or more loci join then diverge. Although they are 

most commonly encountered on the real axis, they may also occur elsewhere in the 

complex plane. Each break point is a point where a double (or higher order) root exists 

for some value of K. Mathematically, given the root locus equation 

           

where the transfer function G(s) consists of a numerator, A(s), and denominator, B(s), 

then the break points can be determined from the roots of 

 

If K is real and positive at a value s that satisfies this equation, then the point is a break 

point. There will always be an even number of loci around any break point; for each 

locus that enters the locus, there must be one that leaves. 
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Step 5: Angles of Departure/Arrival 

The angle criterion determines which direction the roots move as the gain moves 

from zero (angles of departure, at the forward-loop poles) to infinity (angles of arrival, at 

the forward-loop zeros). An angle of departure/arrival is calculated at each of the 

complex forward-loop poles and zeros. 

 

Step 6: Axis Crossings 

The points where the root locus intersects the imaginary axis indicate the values 

of K at which the closed loop system is marginally stable. The closed loop system will 

be unstable for any gain for which the locus is in the right half plane of the complex 

plane. If the root locus crosses the imaginary axis from left to right at a point where 

K=K0 and then stays completely in the right half-plane, then the closed-loop system is 

unstable for all K>K0. Therefore, knowing the value of K0 is very useful. Some systems 

are particularly nasty when their locus dips back and forth across the imaginary axis. In 

these systems, increasing the root locus gain will cause the system to go unstable 

initially and then becomes stable again. 

 

Step 7: Sketch the Locus 

The complete root locus can be drawn by starting from the forward-loop poles, 

connecting the real axis section, break points, and axis crossings, then ending at either 

the 

forward-loop zeros or along the asymptotes to infinity and beyond. If your hand-drawn 

locus is not detailed enough to determine the behavior of your system, then you may 

want to use Matlab or some other computer tool to calculate the locus exactly. 
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Calculating the Gain 

The root locus shows you graphically how the system roots will move as you 

change the root locus gain. Often, however, one must determine the gain at critical 

points on the locus, such as points where the locus crosses the imaginary axis. The 

magnitude criterion is used to determine the value of the root locus gain, K, at any point 

on the root locus. The gain is calculated by multiplying the lengths of the distance 

between each pole to the point then dividing that by the product of the lengths of the 

distance between each zero and the point. 

 

Consider the system with transfer function 

 

and corresponding root locus 

 

The gain at the point (-1, 0) is thus  
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The root locus gain for other points on the locus are given in the following table: 

Coordinate gain  

0.75, 0 0.9375 

0.5, 0  1.75 

0.25, 0 2.4375 

0, 0 4 

0, 0.25 4.0625 

0, 0.5 4.25 

0, 0.75 4.5625 

0, 1 5 

0, 2 8 

0, 3 13 

 

Note that a linear change in position on the locus usually does not correspond to a linear 

change in the root locus gain. 

Example: Sketch the root loci for the system shown in Figure below, the gain K is 

assumed to be positive. Observe that for small or large value of K the system is 

overdamped and for medium values of K it is underdamped.  

Solution: The procedure of plotting the root loci is as follows:  

1- Locate the poles and zeros on the complex plane. Root loci exist on the negative 

real axis between 0 and -1 and between -2 and -3.  

2- The number of open-loop poles and that of finite zeros are the same. This means 

that there are no asymptotes in the complex region of s-plane.  

3- Determine the breakaway and break-in points. The characteristic equation of the 

system is  

  
           

      
    or    

      

          
   

The breakaway and break-in points are determined from  

  

  
  

                        

[          ] 
 

  
                   

[          ] 
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 As follows:                          

 Notice that both points are on root loci. Therefore, they are actual breakaway or 

break-in points. At point           the value of K is  

  
               

              
        

Similarly, at           

  
                

               
    

(Because point          lies between two poles, it is a breakaway point, and because 

point          lies between two zeros, it is break-in point.  

4-  Determine the sufficient number of points that satisfy the angle condition. (It can 

be found that the root loci involve a circle with center at -1.5 that passes through 

the breakaway and break-in points). The root-locus plot is as shown in figure 

below.  

Note that this system is stable for my positive value of K since all the root loci lie in the left half 

s-plane. Small values of K (0 < K < 0.0718) correspond to an overdamped system. Medium 

values of K (0.0718 < K < 14) correspond to an underdamped system. Finally, large values K 

(14 < K) correspond to an overdamped system. With a large value of K, the steady state can be 

reached in much shorter time than with a small value of K. The value of K should be adjusted 

so that system performance is optimum according to a given performance index. 
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Root Locus Construction Steps   

1. Start at the transfer function of the forward loop (T.F = G(s) H(s)), find its poles, 

zeros, the number of poles (P), and the number of zeros (Z).  

 

2. Find the real axis crossings according to the rule “a point on the real axis lies on 

the locus if the number of open-loop (poles + zeros) on the real axis to the right 

half of s-plane is odd.  

 

3. Calculate the number of asymptotes (No. of asymptotes = P – Z ).  

 

4. Calculate the angle of asymptotes   

                       
          

   
                    

                       
          

   
                    

                                            

 

5. Calculate the centroid where the asymptotes meet the real axis:  

      
∑        ∑       

   
 

6. Calculate the Breakaway and Break in points by solving 
  

  
  . 

7. Find the intersection points with the imaginary axis using Routh’s array.  

8. If there is any pole or zero has an imaginary part, then calculate the angle of 

departure from an open loop pole or the angle of arrival at an open loop zero.   

   

     

[                                                               ]  

[                                     ]  



 

13 
 

 

Example: Sketch the root loci of the control system shown in Figure below.  

 

Solution: The open-loop poles are located at s = 0, s = -3 + j4, and s = -3 - j4. A root 

locus branch exists on the real axis between the origin and   .There are three 

asymptotes for the root 1oci.The angles of asymptotes are 

 

 

Next we check the breakaway and break-in points. For this system we have 
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