1. Symmetric-Key Algorithms:
1.1DES—The Data Encryption Standard, hers
1.2 16 round Feistel system

3.1DES—The Data Encrvption Standard:
The overall scheme for DES encryption 1s illustrated i Figure 3.4. As with any

encryption scheme, there are two imputs to the encryption function: the plaintext to
be encrypted and the key. In this case, the plaintext must be 64 bits in length and

the key 1s 56 bits in length.

Note: Actually, the function expects a 64-bit key as mput. However, only 56 of

these bits are ever used; the other 8 bits can be used as parity bits or simply set

arbitrarily.

64-bit plaintext 64-bit key

Initial permutation Permuted choice 1

756
Y

48 56
Permuted choice 2

I.eft circular shift

X56

764
Y i
K, a8 56
' Round 2 'l — /*{ Permuted choice 2 'l/' Left circular shift '

| |
|

|
Y _ Y
Round 16 Permuted choice 2 <4 Left circwlar shifl

Inverse mitial
permutation

Y
64-bit ciphertext

J

The left-hand side of the figure, we can see that the processing of the
plaintext proceeds in three phases.

e First, the 64-bit plaintext passes through an initial permutation (IP)
that rearranges the bits to produce the permuted input. This is
followed by a phase consisting of 16 rounds of the same function,
which involves both permutation and substitution functions.

¢ The outputofthe last (sixteenth) round consists of 64 bits thatarea
function of the input plaintext and the key. The left and right halves
of the output are swapped to produce the preoutput.

¢ Finally. the preoutputis passed through a permutation (IP-1) that is
the inverse of the initial permutation function. to produce the 64-bit
cipher text. With the exception of the initial and final permutations,
DES has the exact structure of a Feistel cipher.

The right-hand portion of Figure shows the way in which the 56-bit
key is used.

e |nitially, the key is passed through a permutation function.

¢ Then, for each of the 16 rounds, a subkey (Ki) is produced by the
combination of a left circular shift and a permutation.

« The permutation function is the same for each round, buta

different subkey is produced because of the repeated shifts of the
key bits.

Initial Permutation
The mmtial permutation and 1ts mverse are defined by tables, as shown m Tables 3.2a

and 3 2b, respectively. The tables are to be mterpreted as follows. The input to a table
consists of 64 bits numbered from 1 to 64. The 64 entries in the permutation table
contain a permutation of the numbers from 1 to 64. Each entry in the permutation table
imndicates the position of a numbered mput bit 1 the output, which also consists of 64
bats |

Table 3.2. Permutation Tables for DES

{This kem Is displayed on page 76 In the print verslon)

43

33

23

47

45

£

&

41

[a) Inituad Permmatatinn [IP]

34 26
3E Z8
1E 30
40 32
3 23
14 a7
3 29
& 31

(b) Inveres Initial Permutation [P‘I]

1€ 56
| | 23
14 4
12 53
12 52
11]|
iC =11
9 43

18

18

17T

LE

37

1

3C

0

(c) Expansion Permutation (E)

32 1 2 3 . .

4 5 s . . .

g 9 10 11 . .

12 13 14 - o .

16 17 18 . . .,

20 21 29 . e .

24 25 75 7 - 2

28 29 30 31 - 1

{d) Permutation Function (P)
16 7 20 21 - o . -
1 15 23 26 c . . .
{a) Initial Permutation (IP})

19 13 a0 [27 1 . .

To see that these two permutation functions are indeed the inverse of each other, consider the following 64-bit input M:

M1 M2 M3 M4 M5 Mé M7 Ma

Mg M10 M1 M12 M13 M14 M15 M16
M17 M18 M1g M20 M21 M22 M23 M24
M25 M26 M27 M2a M2g M30 M31 M3z
M33 M34 M35 M35 M37 M3g M3g Maq
M4 M42 M43 Ma4 M4 M4g Ma7 Mag
Mag M5 M1 M52 M53 M54 M55 M56

Ms7 Msg Msg M&o M1 Me2 Ma3 Mgy

where M) is a binary digit. Then the permutationx = IP(M) is as follows:

M58 M50 M42 M34 M26 M18 M10 M2
M&0 M52 M44 M35 M28 M20 M12 Ma
Ma2 M54 M46 M33 M30 M22 M14 M6
Me4 M56 Mag Map M3z M24 M1ig Mg
M&7 Mag M4 M3a3 M35 M17 Mg M1
Msg Ms1 M43 M35 Mz7 M1g M11 M3
M1 M53 M45 M37 M2g M21 M13 M5
ME3 M55 May M39 M31 M23 M15 M7

|If we then take the inverse pemutation Y= IF_1 (X) = IF"1|[IF'{M:|J, it can be seen that the original ordering of the bits is restored.

Details of Single Round

Figure 3.5 shows the internal structure of a single round. Again, begin by focusing on
the left-hand side of the diagram. The left and right halves of each 64-bit intermediate
value are treated as separate 32-bit quantities. labeled L (left) and R (right). As in any
classic Feistel cipher. the overall processing at each round can be summarized in the
following formulas:

Li = Ri-1

Ri=Li-1 x F(Ri-1. Ki)

Substitution/choice
(S-box)

2

W ———— . ———— — = -

-¢t— IR bits —»

-4— I8 bits —»
Cf-l I

Left shifis) Left shitt(s)

= Permutation/contraction
Ki \ (Permuted choice 2) /

The round key K7 1s 48 bits. The R mput is 32 bits. This R mput 1s first expanded to 48
bits by using a table that defines a permutation plus an expansion that involves

duplication of 16 of the R bits (Table 3.2¢). The resulting 48 bits are XORed with K.

This 48-bit result passes through a substitution function that produces a 32-bit output,

which is permuted as defined by Table 3.2d.

The role of the S-boxes in the function F is illustrated in Figure 3.6. The substitution
consists of a set of eight S-boxes. each of which accepts 6 bits as input and produces 4
bits as output. These transformations are defined in Table 3.3. which 1s interpreted as
follows: The first and last bits of the mput to box Si form a 2-bit binary number to
select one of four substitutions defined by the four rows in the table for Si. The nuddle
four bits select one of the sixteen columns. The decimal value in the cell selected by
the row and column is then converted to its 4-bit representation to produce the output.
For example, in S1 for input 011001, the row 1s 01 (row 1) and the column i1s 1100

(column 12). The value in row 1, column 12 is 9, so the output 1s 1001.

R (32 bits)

Su

Table 3.3. Definition of DES S-Boxes.

14 4 13 I 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 10 6 12 M Y 3 }
4 I 14 s 13 6 2 1 15 12 9 7 3 10 5 0
15 12 8 2 R 9 I 7 S 1N 3 14 10 0 6 13
15 I S 14 6 11 3 - 9 7 e 13 1s 0 5 10
g I3 4 7 15 2 8 14 12 0 | 10 6 > 13 5
0 14 7 1 10 4 13 | 5 8 12 6 9 3 e B
13 § 10 | 3 15 R S < 6 A 0 S 14 9
10 0 9 14 6 3 15 3 I 13 12 7 1 4 2 8
13 7 0 9 3 B 6 10 2 8 > 18 82 1 15 |
13 6 K 9 8 15 3 0 11 1 2z 1 5§ 10 14 7
1 10 13 0 6 9 8 7 4 15 4 3 1 h) 2 12
7 13 W4 3 0 6 9 10 | 2 8 -~ e 12 5 15
13 8 1 5 6 15 0 3 Rl 7 2 12 l 10 14 9
10 6 9 0 12 1 7 13 15 1 3 14 5 2 8 A
< T L 0 6 10 I 13 8 9 Kl 5 1 12 7 2 4

3¢

2 12 4 I 7 0 1l 6 S 5 3 10 B 0 14 g
4 11 s 12 4 7 13 | S 0 15 10 3 9 8 6
4 2 1 8 10 13 7 8 IS 9 12 5 6 3 14
I 8 12 7 | 14 2 13 6 15 0 9 10 - 5 3
12 | 10 15 9 - o) 0 13 3 4 14 7 - S ¢
10 15 4 2 7 12 9 5 6 | 13 14 0 11 3 b
9 14 15 S 2 s 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 2 A% 1 A 14 | 7 0 S
4 11 2 14 15 0 8 13 3 12 9 § 10 |
13 0 1l 7 4 9 I 10 14 3 S 12 2 15 5 6
1 4 11 13 12 3 7 14 10 15 6 ' 0 5 9 2
6 11 3 8 1 4 10 7 9 3 g B W 2 < (i
13 2 8 Rl 6 15 11 l 10 9 I 14 5 0 12 7
1 15 13 s 10 3 7 4 12 S 6 11 0 14 9
7 S 4 1 9 12 W 2 0 6 10 13 15 3 5 S
2 I 4 7 - 10 8§ 13 15 12 9 0 3 b g 13

this becomes

... defghi hiyjklm Immopq ...

The outer two bits of each group select one of four possible substitutions (one row of
an S-box). Then a 4-bit output value 1s substituted for the particular 4-bit mput (the
middle four input bits). The 32-bit output from the eight S-boxes i1s then permuted. so
that on the next round the output from each S-box immediately affects as many others

as possible.

Kev Generation

Returning to Figures 3.4 and 3.5. we see that a 64-bit key 1s used as input to the
algorithm. The bits of the key are numbered from 1 through 64: every eighth bit is
1gnored, as indicated by the lack of shading in Table 3.4a. The key 1s first subjected to
a permutation governed by a table labeled Permuted Choice One (Table 3.4b). The
resulting 56-bit key 1s then treated as two 28-bit quantities, labeledC 0 and D0. At each
round. Ci-1 and Di-1 are separately subjected to a circular left shift. or rotation. of 1 or
2 bits, as governed byT able 3.4d.

These shifted values serve as input to the next round. They also serve as mput to
Permuted Choice Two (Table 3.4c). which produces a 48-bit output that serves as

mput to the function F(Ri-1, K7).

L

41

LT

10

19

63

14

|

Table 3.4. DES Key Schedule Calculation

49

5a

35

62

27

ak

43

L]

58

[a) Input Key

28

44

52

21

k)

45

53

61

{2} Permuied Choice One (PC-1)

41

a0

59

47

G1

33

a2

51

B0

3%

46

53

29

25

43

f2

31

L

45

20

14

22

30

38

46

b4

fi2

17

L]

35

23

aa

r

12

15

23

i

30

A7

L]

biX]

18

27

a6

15

22

25

16

24

32

40

48

]

Round
number

Bits rotated

14

15

20

41

a1

1

17

G2

45

53

(c) Parmuted Choice Two (PC-2)

11

21

18

ER

EE]

40

24

10

a7

48

42

1

23

27

47

50

(d) Schodule of Laf Shills

il

T

3

9

10

149

20

55

45

3

11

12

13

30

a9

28

13

14

15

16

This example 1s neat and orderly because our plaintext was exactly 64 bits long. The
same would be true if the plaintext happened to be a multiple of 64 bits. But most
messages will not fall mnto this category. They will not be an exact multiple of 64 bits
(that 1s. an exact multiple of 16 hexadecimal numbers).

For example, take the message "Your lips are smoother than vaseline". This plaintext
message 15 38 bytes (76 hexadecimal digits) long. So this message must be padded
with some extra bytes at the tail end for the encryption. Once the encrypted message

has been decrypted. these extra bytes are thrown away. There are. of course. different
padding schemes--different ways to add extra bytes. Here we will just add 0Os at the
end. so that the total message 1s a multiple of 8 bytes (or 16 hexadecimal digits. or 64
bits).

The plaintext message "Your lips are smoother than vaseline" is. in hexadecimal.

"596FT7572206C6970 732061726520736D 6F6E746865722074 68616E2076617365
6C696E650D0A".

(Note here that the first 72 hexadecimal digits represent the English message. while
"0D" 1s hexadecimal for Carriage Return. and "0A" 1s hexadecimal for Line Feed.
showing that the message file has terminated.) We then pad this message with some 0s
on the end. to get a total of 80 hexadecimal digits:

"596FT7572206C6970 732061726520736D 6F6E 746865722074 68616E2076617365
6C696E650D0A0000".

If we then encrypt this plaintext message 64 bits (16 hexadecimal digits) at a time,
using the same DES key "0E329232EA6D0OD73" as before. we get the ciphertext:

"CO999FDDE378D7ED 727DAOOBCASASAEE 47F269A4D6438190
9DDS52F78F5358499 828AC9B453E0EGS3".

How DES Works in Detail

DES 1s a block cipher--meaning it operates on plaintext blocks of a given size (64-
bits) and returns ciphertext blocks of the same size. Thus DES results in

a permutation among the 264 (read this as: "2 to the 64th power") possible
arrangements of 64 bits, each of which may be either 0 or 1. Each block of 64 bits 1s
divided into two blocks of 32 bits each, a left half block L and a right half R. (This
division is only used in certain operations.)

Example: Let M be the plain text message M = 0123456789 ABCDEF. where M is in
hexadecimal (base 16) format. Rewriting M in binary format. we get the 64-bit block
of text:

M = 0000 0001 0010 001101000101 OL100111 1000 1001 10101011 11001101
1110 1111

L =0000 0001 0010 0011 0100 0101 01100111

R =10001001 1010 1011 1100 1101 11101111

The first bit of M is "0". The last bit is "1". We read from left to right.

DES operates on the 64-bit blocks using key sizes of 56- bits. The keys are actually
stored as being 64 bits long. but every 8th bit in the key 1s not used (i.e. bits numbered

8.16.24.32.40. 48, 56. and 64). However. we will nevertheless number the bits from
1 to 64. going left to right. in the following calculations. But, as you will see. the eight
bits just mentioned get eliminated when we create subkeys.

Example: Let K be the hexadecimal key K= 133457799BBCDFF1. This gives us as
the binary key (setting 1 = 0001, 3 =0011. etc.. and grouping together every eight bits,
of which the last one in each group will be unused):

K=00010011001101000101011101111001 10011011 10111100 11011111
11110001

The DES algorithm uses the following steps:

Step 1: Create 16 subkeys, each of which is 48-bits
long.

The 64-bit key 1s permuted according to the following table, PC-1. Since the first
entry in the table 1s "57", this means that the 57th bit of the original keyK becomes the
first bit of the permuted key K+. The 49th bit of the original key becomes the second
bit of the permuted key. The 4th bit of the original key 1s the last bit of the permuted
key. Note only 56 bits of the original key appear in the permuted key.

PC-1
37 49 41 33 25 17 9
1 58 50 4z 34 26 18
10 2 59 = 43 35 27
19 11 3 60 52 44 36
€3 35 47 39 31 23 15
7 62 54 4€ 38 30 22
14 6 61 53 45 37 29
21 13 > 28 20 12 4

Example: From the original 64-bit key

K=00010011 00110100 01010111 01111001 10011011 10111100 11011111
11110001

we get the 56-bit permutation

K+=11110000110011 0010101 0101111 0101010 1011001 1001111 0001111
Next. split this key mto left and right halves. Cy and D,. where each half has 28 bits.
Example: From the permuted key K+. we get

Cy,=11110000110011 0010101 0101111
D;=0101010 1011001 1001111 0001111

With C; and D, defined. we now create sixteen blocks C, and D,.. 1<=n<=16. Each
pair of blocks C, and D, 1s formed from the previous pair C,,_; andD,._;. respectively.
forn=1.2. ... 16. using the following schedule of "left shifts" of the previous block.

To do a left shift. move each bit one place to the left. except for the first bit. which is
cycled to the end of the block.

Iteration Number of
Number Left shifts

[T (e T O 1 BT N 1S I S T S

9
10
11
12
13
14
15
16

[l N T T T T T S T T Y Y S S T i

This means, for example. C; and D; are obtained from C> and D, respectively, by two
left shifts, and Cy4 and Dy, are obtained from Cy; and Dys. respectively, by one left
shift. In all cases, by a single left shift is meant a rotation of the bits one place to the
left. so that after one left shift the bits in the 28 positions are the bits that were
previously in positions 2. 3..... 28. 1.

Example: From original pair pair C, and D, we obtain:

C;=1110000110011001010101011111
D;=1010101011001100111100011110

C;=1100001100110010101010111111
D;=0101010110011001111000111101

(;=0000110011001010101011111111
D;=0101011001100111100011110101

C,=0011001100101010101111111100
D,=0101100110011110001111010101

C;=1100110010101010111111110000
Ds=0110011001111000111101010101

Cs;=0011001010101011111111000011
Ds=1001100111100011110101010101

C-=1100101010101111111100001100
D-=0110011110001111010101010110

Cs=0010101010111111110000110011
Dy;=1001111000111101010101011001

Co=0101010101111111100001100110
D,=0011110001111010101010110011

C;p=0101010111111110000110011001
D;;=1111000111101010101011001100

C;;=0101011111111000011001100101
D;;=1100011110101010101100110011

C;;=0101111111100001100110010101
D;;=0001111010101010110011001111

C;;=0I111111110000110011001010101
D;;=0111101010101011001100111100

C;,=1111111000011001100101010101
D;,=1110101010101100110011110001

C;;=1111100001100110010101010111
D;;=1010101010110011001111000111

C;s=1111000011001100101010101111
D;s=0101010101100110011110001111

We now form the keys K,. for 1<=n<=16. by applying the following permutation table
to each of the concatenated pairs C,D,. Each pair has 56 bits, butPC-2 only uses 48 of
these.

PC-2
14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 4a
44 49 39 56 34 53
4€ 42 50 36 29 32

Therefore. the first bit of K, 1s the 14th bit of C,D,,.. the second bit the 17th. and so on.
ending with the 48th bit of K, being the 32th bit of C,,D,,.

Example: For the first key we have C;D; = 1110000 1100110 0101010 1011111
1010101 0110011 00111100011110

which, after we apply the permutation PC-2. becomes

; =000110 110000001011 101111 111111 000111 000001 110010

For the other keys we have

>=011110011010 111011 011001 110110 111100 100111 100101
K;=010101 011111110010 001010010000 101100111110011001
K,=011100101010 110111 010110 110110110011 010100011101
K;=011111001110 110000 000111 111010 110101 001110 101000
K;=011000111010 010100 111110 010100000111 101100 101111
K-=111011 001000 010010 110111 111101 100001 100010 111100
Kg=111101 111000 101000 111010 110000 010011 101111 111011
Ko,=111000 001101 101111 101011 111011011110011110 000001
K;,=101100 011111001101 000111 101110 100100011001 001111

;;; = 001000 010101 111111 010011 110111 101101 001110000110

;>=011101 010111 000111 110101 100101 000110011111 101001
K;;=100101 111100010111 010001 111110 101011 101001 000001

;,=010111 110100 0OT110 110111 111100 101110011100 111010

;s=101111 111001 000110001101 001111010011 111100001010
K;;=110010 110011 110110 001011 000011 100001 011111 110101

So much for the subkeys. Now we look at the message 1tself.

Step 2: Encode each 64-bit block of data.

There 1s an initial permutation IP of the 64 bits of the message data M. This
rearranges the bits according to the following table. where the entries in the table show
the new arrangement of the bits from their mitial order. The 58th bit of M becomes the
first bit of IP. The 50th bit of M becomes the second bit of IP. The 7th bit of M 1s the
last bit of IP.

IP

8 50 2 54 26 18 10 2
o0 52 44 36 28 20 12 =
62 54 46 38 30 22 14 6
o4 56 48 40 32 24 16 8
57 45 41 33 25 17 9 1
59 51 43 35 27 15 11 3
6l 53 45 37 29 21 13 2
63 53 47 39 31 23 15 1

Example: Applying the initial permutation to the block of text M. given previously.
we get

M= 00000001 0010001101000101 01100111 1000 1001 1010 1011 1100 1101
1110 1111

IP=1100 1100 00000000 1100 1100 1111 11111111 0000 1010 1010 1111 0000
1010 1010

Here the 58th bit of M 1s "1". which becomes the first bit of IP. The 50th bit of M 1s
"1". which becomes the second bit of IP. The 7th bit of M 1s "0". which becomes the
last bit of IP.

Next divide the permuted block IP into a left half L, of 32 bits. and a right half R, of 32 bits.

Example: From IP, we get Ly and Ry

L,=1100 11000000 00001100 1100 11111111
R,=11110000 1010 10101111 0000 10101010

-LH = RH-I
R,=L,;+ ﬂRrr-I -EH)

Example: For n = 1. we have

; =000110 110000001011 101111 111111 000111 000001 110010
L;=R,=11110000101010101111 0000 1010 1010

R; =L+ flRy.K;)

It remains to explain how the function fworks. To calculate f. we first expand each
block R,,_; from 32 bits to 48 bits. This i1s done by using a selection table that repeats
some of the bits in R,,_; . We'll call the use of this selection table the function E.
Thus E(R,_;) has a 32 bit input block. and a 48 bit output block.

Let E be such that the 48 bits of its output. written as 8 blocks of 6 bits each, are
obtained by selecting the bits in its inputs in order according to the following table:

E BIT-SELECTION TARBLE

32 1 2 3 4 5
4 5 6 7 5 9
8 9 10 11 12 13

12 13 14 15 16 17

le 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

Thus the first three bits of E(R,,_;) are the bits in positions 32, 1 and 2 of R,,_; while the
last 2 bits of E(R,_7) are the bits in positions 32 and 1.

Example: We calculate E(Ry) from Ry as follows:

R,=11110000 1010 10101111 0000 1010 1010
E(R;)=011110 100001 010101 010101 011110 100001 010101 010101

(Note that each block of 4 original bits has been expanded to a block of 6 output bits.)
Next in the fcalculation, we XOR the output E(R,,_;) with the key K,,:

K, + E(R,.1).
Example: For K; . E(Rj). we have

(; =000110 110000001011 101111 111111000111 000001 110010
E(R;)=011110 100001 010101 010101 011110 100001 010101 010101
;THE(Ry) =011000 010001 011110111010 100001 100110 010100 100111.

We have not yet finished calculating the function /. To this point we have

expanded R,_; from 32 bits to 48 bits. using the selection table. and XORed the result
with the key K, . We now have 48 bits. or eight groups of six bits. We now do
something strange with each group of six bits: we use them as addresses in tables
called "S boxes". Each group of six bits will give us an address in a different S box.
Located at that address will be a 4 bit number. This 4 bit number will replace the
original 6 bits. The net result 1s that the eight groups of 6 bits are transformed nto
eight groups of 4 bits (the 4-bit outputs from the S boxes) for 32 bits total.

Write the previous result, which 1s 48 bits, in the form:
K, +~ E(R,.;) =B:B.B;BB;BsB-Bs.
where each B; 1s a group of six bits. We now calculate
S1(B1)S:(B2)S5(B3)S(B,)S5(B;5)Ss(Be)S-(B)Ss(Bs)

Sl

Column Humber

Row

No. 0 1 2 3 4 5 6 7 g8 9 10 11 12 13 14 15
0 14 4 13 1 215 11 &8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 B
2 4 1 14 8 13 6 211 15 12 9 7 3 10 5 0
3 15 12 B 2 4 9 1 7 511 314 10 O 6 13

If §; 1s the function defined in this table and B 1s a block of 6 bits. then S;(B) 1s
determined as follows: The first and last bits of B represent in base 2 a number in the
decimal range 0 to 3 (or binary 00 to 11). Let that number be i. The middle 4 bits

of B represent in base 2 a number in the decimal range 0 to 15 (binary 0000 to 1111).
Let that number be j. Look up in the table the number in the i-th row and j-th column.

It 1s a number in the range 0 to 15 and 1s uniquely represented by a 4 bit block. That
block 1s the output S;(B) of S; for the input B. For example. for input block B= 011011

011011 the first bit 1s "0" and the last bit "1" giving 01 as the row. This 1s row 1. The
middle four bits are "1101". This is the binary equivalent of decimal 13. so the column

1s column number 13. In row 1. column 13 appears 5. This determines the output: 5 1s
binary 0101, so that the output is 0101. Hence S;(011011) =0101.

The tables defining the functions Sj,...,85 are the following:

sl
14 4 13 1 215 11 8 3 10 6 12 > 9 o 7
0 15 7 4 14 2 13 1 10 & 12 11 8 5 3 B
4 1 14 &8 13 ¢ 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 5 1 7 5 11 3 14 10 O 6 13
S2
15 1 8 14 6 11 3 4 g 7 213 12 0 5 10
3 13 4 7 13 2 5 14 12 0O 110 e 9 11 5
0 14 711 10 4 13 1 5 8 12 6 9 3 2 15
13 & 10 1 3 15 4 2 11 & 712 o > 14 S
S3
10 0O 9 14 & 3 15 5 113 12 7 11 4 2 8
13 7 0 9 3 4 & 10 2 8 514 12 11 15 1
13 ¢ 4 9 8 15 3 0 11 1 2 12 5 10 1 1
1 10 13 0O 6 9 8 17 4 15 14 3 11 5 2 12

14

11

12
10

13

12
11

L]

N

1 15
7 11

2

1

14
11

[e S 1

'_'.

10

15

11
11
13

13

4

14

o LN L

14

13

12
10

W d =] D

10

13
14

]

o

i =1

11
13

12
15

=] = a0

=
(]

sS4

10

1=

S8

[Sy

[-
Lad

1z

15

e e B

o

[N I

12

15

oLy

12

[I % i

15
12

e I) I

[I R

o

1 0
&

14
11

15
10

= =t
[y I T S T |

14
11
13

11 12
1 10
5 2

1z 7

13 0
3 9
6 3

10 4

14 7
0 11
1 13
6 0
5 10
2 15
0 5
14 Z
> 0
0 14
15 3

4 15
14 S
8 4
2 14
14 S
8 ©
0 14
5 3
5 11
3 8
11 ¢
8 13
e 1
8 6
9 2
3 12
12 7
g 2
5 B
6 11

Example: For the first round. we obtain as the output of the eight S boxes:

K; +E(R;)=011000 010001 011110 111010 100001 100110010100 100111.

8:(B1)S:(B;3)S;(B3)S+(B4)S;5(B;5)Ss(Bs)S-(B:)Ss(Bg) = 0101 1100 1000 0010 1011 0101
1001 0111

The final stage in the calculation of fis to do a permutation P of the S-box output to
obtain the final value of f.

f: P{:SI(BIJ'S)(B}}-STSrBS)}

The permutation P is defined in the following table. P yields a 32-bit output from a
32-bit input by permuting the bits of the input block.

P

16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 g Z4 14
32 27 3 9

19 13 30

4

noan

[

Example: From the output of the eight S boxes:

S:(B1)S:(B3)S;:(B3)S«(ByS;s(B5)Ss(Bs)S-(B-)Ss(Bg) = 0101 1100 1000 0010 1011 0101
1001 0111

we get
Sf=001000110100 1010 1010 1001 1011 1011
Ri=Lo+flRy.K;)

= 1100 1100 0000 0000 1100 1100 1111 1111
+0010 0011 0100 1010 1010 1001 1011 1011
=111011110100 10100110 0101 0100 0100

In the next round. we will have L, = R;. which is the block we just calculated. and
then we must calculate R; =L; + f{R;, K3). and so on for 16 rounds. At the end of the
sixteenth round we have the blocks L;s and R;5. We then reverse the order of the two
blocks into the 64-bit block

RisLis

and apply a final permutation TP as defined by the following table:

40 8 45 16 56 24 o4 32
39 7 47 15 53 23 63 31
38 € 46 14 -4 22 62 30
37 3 45 13 53 21 6l 29
36 4 44 12 52 20 &0 28
33 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 357 23

That is, the output of the algorithm has bit 40 of the preoutput block as its first bit, bit
8 as 1ts second bit. and so on. until bit 25 of the preoutput block 1s the last bit of the
output.

Example: If we process all 16 blocks using the method defined previously, we get. on
the 16th round.

L;s=0100001101000010001100100011 0100
R;;=0000 10100100 1100 1101 1001 1001 0101

We reverse the order of these two blocks and apply the final permutation to

R;sL;s=00001010 01001100 11011001 10010101 01000011 01000010 00110010
00110100

IP' =10000101 11101000 00010011 01010100 00001111 00001010 10110100
00000101

which in hexadecimal format 1s
85E813540F0AB405.

This 1s the encrypted form of M = 0123456789 ABCDEF: namely. C =
85E813540F0AB405.

Decryption 1s simply the inverse of encryption. follwing the same steps as above. but
reversing the order in which the subkeys are applied.

